Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 373, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609405

RESUMO

In recent years, the landscape of computer-assisted interventions and post-operative surgical video analysis has been dramatically reshaped by deep-learning techniques, resulting in significant advancements in surgeons' skills, operation room management, and overall surgical outcomes. However, the progression of deep-learning-powered surgical technologies is profoundly reliant on large-scale datasets and annotations. In particular, surgical scene understanding and phase recognition stand as pivotal pillars within the realm of computer-assisted surgery and post-operative assessment of cataract surgery videos. In this context, we present the largest cataract surgery video dataset that addresses diverse requisites for constructing computerized surgical workflow analysis and detecting post-operative irregularities in cataract surgery. We validate the quality of annotations by benchmarking the performance of several state-of-the-art neural network architectures for phase recognition and surgical scene segmentation. Besides, we initiate the research on domain adaptation for instrument segmentation in cataract surgery by evaluating cross-domain instrument segmentation performance in cataract surgery videos. The dataset and annotations are publicly available in Synapse.


Assuntos
Extração de Catarata , Catarata , Aprendizado Profundo , Gravação em Vídeo , Humanos , Benchmarking , Redes Neurais de Computação , Extração de Catarata/métodos
2.
PLoS One ; 16(10): e0258390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34673784

RESUMO

In the light of an increased use of premium intraocular lenses (IOL), such as EDOF IOLs, multifocal IOLs or toric IOLs even minor intraoperative complications such as decentrations or an IOL tilt, will hamper the visual performance of these IOLs. Thus, the post-operative analysis of cataract surgeries to detect even minor intraoperative deviations that might explain a lack of a post-operative success becomes more and more important. Up-to-now surgical videos are evaluated by just looking at a very limited number of intraoperative data sets, or as done in studies evaluating the pupil changes that occur during surgeries, in a small number intraoperative picture only. A continuous measurement of pupil changes over the whole surgery, that would achieve clinically more relevant data, has not yet been described. Therefore, the automatic retrieval of such events may be a great support for a post-operative analysis. This would be especially true if large data files could be evaluated automatically. In this work, we automatically detect pupil reactions in cataract surgery videos. We employ a Mask R-CNN architecture as a segmentation algorithm to segment the pupil and iris with pixel-based accuracy and then track their sizes across the entire video. We can detect pupil reactions with a harmonic mean (H) of Recall, Precision, and Ground Truth Coverage Rate (GTCR) of 60.9% and average prediction length (PL) of 18.93 seconds. However, we consider the best configuration for practical use the one with the H value of 59.4% and PL of 10.2 seconds, which is much shorter. We further investigate the generalization ability of this method on a slightly different dataset without retraining the model. In this evaluation, we achieve the H value of 49.3% with the PL of 18.15 seconds.


Assuntos
Extração de Catarata , Pupila , Lentes Intraoculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...